CHAPTER 3 RENEWABLE AND NON-RENEWABLE ENERGY SOURCES

- 1 Energy Sources
- > Renewable energy: An energy source is said to be <u>renewable</u> if it can be naturally
 - <u>regenerated</u> at a rate <u>larger than or comparable to</u> the rate of consumption.
- > Energy density is the energy can be release per <u>unit</u> <u>mass</u> of energy source.
- > <u>Nuclear</u> energy has the largest energy density.
- > Common renewable energy sources:

tidal energy, hydroelectricity, wind energy Solar apotherma

Common non-renewable energy sources:

Coal, oil and natural gases, <u>nuclear energy</u>

> Advantages of nuclear energy over fossil fuel:

densiti entrav

- 2 Nuclear Power
 - 2.1 Binding Energy
- > It is observed that the mass of a nucleus is <u>uss</u> than the total mass of the constituting. Such difference is called <u>mass object</u> (Δm).</u>
- > By Einstein's mass energy <u>equivalence</u> principle, this is the energy released when nucleons

are bounded together. This energy is called the <u>bihding energy</u>, reflecting the <u>stability</u> of a nucleus.

- ➤ A bigger nucleus will have a greater binding energy. To have a fair comparison of nuclei stability, we use <u>binding energy DFF mcllon</u>.
- > A large binding energy per nucleon means the nucleus is very <u>Stable</u>.
- > Binding energy per nucleon is usually expressed in eV.

1 eV = energy gained by an electron across a potential difference of 1V.

$$IeV = \frac{1.6 \times 15^{-19}}{J}$$

- \succ <u> \perp </u> is at the peak of the curve and it is most stable.
- > Light nuclei can $\frac{fusl}{fusl}$ together to release energy, this is called <u>nuclear</u> $\frac{fusl}{n}$.
- Heavy nuclei can <u>split</u> into lighter nuclei and release energy, this is called <u>nuclear fission</u>.

- Sometimes we also use the atomic mass unit (u) as energy unit. $1u = 1.6606 \times 10^{-27}$ kg, which is equivalent to <u>/.49 × 10</u> $J = __J = __J$
- > Sometimes we also use MeV/c^2 as <u>mass</u> unit.

Example:

Using the data, calculate the binding energy per nucleon for a helium-3 nucleus.

	Neutron	Proton	$^{3}_{2}He$
Mass in MeV/c ²	939.6	938.8	2808.5
△m = 2×938.8 + 1×939.6 - 2808.5			
$= 8.7 MeV/e^2$			
. Binding energy per nucleon = $\frac{8.7}{3} = 2.9 \text{MeV}$			

2.2 Nuclear Fission Reactor

- > Fuel: <u>Uranium 235</u>
- Nuclear fission happens when uranium-235 bombarded by <u>new real</u>, it will then split into two smaller nuclei with liberation of some neutron. A large amount of energy is released in this process.

- > With sufficient amount of U^{235} nuclei, the neutrons released can trigger fission of other nuclei, initiating a <u>chain reaction</u>.
- > If the chain reaction is allowed to proceed freely, the result will be an $\underline{uncontrolled}$ nuclear reaction, which is in the case of an \underline{atomic} bomb.
- In nuclear reactor, <u>control rooks</u> are used to control the rate of reaction by absorbing excess neutron.

Structure:

- **Fuel elements:** \triangleright
 - 238/1 235 U Made from enriched uranium oxide, containing 3% and 97%

(Natural occurrence of ^{235}U : 0.72%)

- Control rods: \triangleright
 - Made of boron that can absorb excess neutrons to control the rate of chain reaction.
 - They can be inserted into or removed from the reaction chamber.
- Moderator: \geq
 - The fuel elements are submerged in water under <u>high Pressure</u>, which serves to 5 000 0 000 the fast fission neutrons for them to react with the nuclear fuels. The chain reaction will stop if the neutrons move too fast.
- Coolant:
 - The pressurized water also acts as a coolant to absorb heat from the reaction and transfer this heat to the electrical generator. This heat will drive a steam Turbike which generates electricity by generators.

3 Environmental Impact of Energy Consumption

> Energy sources need to go through the following stages before the energy is made available for

use: <u>extraction</u>, <u>conversion</u>, and <u>distribution</u>. Each step can

produce environmental impact on society.

> Irrespective of the starting form of energy, the end of any energy conversion process is heat. Such waste heat contributes to the <u>heat</u> is and effect causing higher temperatures in urban areas.

4 Greenhouse Effect

- > \underline{Short} wavelength IR is received from the Sun and warm up Earth surface.
- > The Earth will emit IR of $\log 2^{10}$ wavelength as its surface is much cooler.
- The Earth's atmosphere is <u>transparent</u> to short wavelength IR but not for longer IR. Therefore the long IR emitted by the Earth's surface will be absorbed and re-emitted in all directions. The gases in the atmosphere that absorbs IR radiation are called

- The net effect is that the upper atmosphere and the surface will be ______ \triangleright
- It should be noted that the greenhouse effect is a <u>natural</u> process, which maintains the

habitable for living organisms.

The main greenhouse gases are usually naturally occurring, but their amounts and proportions \triangleright can be changed as a result of human activities.

Greenhouse Gases	Sources
Methane	Livestock and plants.
	Product from decay, decomposition or fermentation.
Water	From water cycle, has a significant effect.
Carbon dioxide	Burning, but plants help to remove this.
Nitrogen oxides	Industry and livestock. (Livestock feeding and waste decomposition)
Ozone	Naturally occurring. Absorbs UV but also adds to greenhouse effect.
Chlorofluorocarbons	Refrigerants, propellants, cleansing solvents. They can deplete the ozone
	layer.

- Global warming: The acceleration of greenhouse effect due to rapid expansion of industrial \triangleright and economical activities.
- \triangleright Impact of global warming:
 - Kise of sea level which will $-\frac{flood}{flood}$ a lot of lowlands.
 - It should be noted that the largest contribution for rise in water level is

<u>thermal expansion</u> of water, while the <u>melting</u> of ice comes next. Change in <u>climate</u> and more <u>extreme</u> weathers may occur.

- Spread of disease. A warmer temperature is favorable for bacterial growth.

- > Factors account for increasing amount of greenhouse gases:
 - Burning of fossil fuels for increasing energy requirements.
 - <u>Clearing</u> of forests.
 - Population growth causing increase on energy requirements.
- 5 Solar Power
- > <u>Astronomical unit (AU)</u>: The <u>average</u> distance from the Sun to the Earth.
 - $1 \text{AU} = \frac{1.496 \times 10^8}{\text{km}}$
- Solar constant: the incoming power of EM radiation from the sun, at a distance 1 AU from sun,

per <u>89 nane-meter</u> of area.

- Due to variation of solar activity, the solar constant actually varies slowly with time. The mean value of solar constant is about 1366 Wm^{-2} .
- The solar constant includes <u>all</u> types of solar radiations, not just the visible light. Also, it does not include the absorption by the <u>atmosphere</u>.

> To harness solar energy arrives the Earth's surface, we usually use <u>solar cells</u> and <u>solar heater</u>.

Example:

The mean distance of the Earth from the Sun is 1.496×10^8 km. The solar constant is 1366 Wm⁻². (a) Calculate the total radiation power of the Sun.

(b) The Earth may be treated as a sphere of radius 6400 km. Find the total solar power radiation towards the Earth.

(a)
$$4\pi r^{2} \cdot P$$

= $4\pi (1.496 \times 10^{11})^{2} (1366)$
= $3.84 \times 10^{26} W$
(b) $\pi r^{2} I$
= $\pi (6.4 \times 10^{6})^{2} (1366)$
= $1.76 \times 10^{17} W$

5.1 Solar Heater

Solar heater converts solar energy into thermal energy in ______.

- > The copper pipe is <u>blackened</u> since a dull surface is a good <u>absor ber</u> of radiation.
- > The glass cover allows radiation to pass through and prevent heat loss by <u>Convection</u>.
- > The reflective insulator prevents heat loss by conduction and radiation.

5.2 Solar Cell

- Solar cell converts light energy into <u>electrical</u> energy. A solar cell is usually prepared in the form of a panel.
- > A solar cell consists of two layers of semiconductors placed in contact, one in $\underline{n-type}$ and one

- n-type: charge carriers are <u>electrons</u>.
 p-type: charge carriers are <u>electron holes</u>.
- > Before light is shined onto the cell:
 - In the p-n junction, negative electrons diffuse from <u>M</u> to <u>p</u>, positive electron holes diffuses from <u>p</u> to <u>M</u>.
 - Such separation of charges makes n-type side <u>positive</u>, and the p-type side <u>negative</u>, around the p-n junction. Therefore an <u>electric field</u> from <u>n</u> to <u>p</u> is set up. Such region is called the <u>depletion</u> region.
 - Such field opposes further charge movements and the system is in equilibrium.
- > When light is shined onto the cell:
 - Some electrons are knocked by the incident photon and becomes <u>mobile</u> electrons and electron holes, which are free to move in the materials.
 - Near the electric field, these mobile electrons will travels from _____ to _____, and mobile electron holes will travels from ______ to _____.

- Under connection to a complete external circuit, excess electrons on $\underline{n-type}$ side may
 - travel through the wire and power the load.
- These electrons finally reach the <u>p-typed</u> side and recombine with positive electron holes there.
- 6 Wind Power
- As different parts of the atmosphere are heated to different <u>femperatures</u>, such temperature differences cause <u>pressure</u> differences and wind blows.
- > The kinetic energy of wind is extracted by wind turbines.
- > Maximum power of a wind turbine:

- The area swept out by the blades of turbine $A = \frac{\pi r}{r}$
- In 1 second, the volume of air that passes the turbine V = Av -

1 mv

 $=\frac{1}{2}\rho Av^{3}$

- Mass of air passes the turbine in 1 second $m = \rho V = \rho A v$.
- Maximum KE available per second =

• Maximum power available :

$$P = \frac{1}{2} \rho A v^{3}$$

> It should be noted that the above expression is the theoretical maximum power available.

Typically only 40% of the wind power can be converted to electrical power.

- Reasons:
 - Wind is not stopped by the turbines.
 - Wind direction not always normal to turbines.
- 7 Hydroelectric Power
- > The source of energy in a hydroelectric power station is the gravitational potential energy of water. This is extracted when water is allowed to flow downhill.
- > The water can gain gravitational potential energy by

